Answer in Statistics and Probability for boo #249331
“n_1= 50 \nnbar{x_1} = 130 \nns_1 = 12 \nnn_2 = 50 \nnbar{x_2} = 135 \nns_2 = 10 \nnH_0: mu_1=mu_2 \nnH_1: mu_1 u2260 mu_2”
Test-statistic:
“t = frac{bar{x_1} – bar{x_2}}{sqrt{s^2_{p} times (frac{1}{n_1} + frac{1}{n_2})}} \nns^2_{p} = frac{(n_1-1) times s^2_1 + (n_2-1) times s^2_2}{n_1+n_2-2} \nn= frac{(50-1) times 12^2 + (50-1) times 10^2}{50+50-2} \nn= 122 \nnt = frac{130-135}{sqrt{122 times (frac{1}{50} + frac{1}{50})}} \nn= -2.263”
P-value
By using t distribution p-value table at α= 0.05, t = -2.263, “df = n_1+n_2- 2 = 98”
p-value = 0.0258
p-value < level of significance
We have to reject H0 at α= 0.05.
There is sufficient evidence to conclude that the significant difference in systolic blood pressures between medication groups assuming equality of the variances.