Answer in Differential Equations
October 14th, 2022
Given
“x^2p^2+xyp+2y^2=0”
Let us denote “xp=q” ,thus we get “q^2+yq+2y^2=0” , now solving q ,we get,
“q=frac{-ypmsqrt{y^2-4cdot 1cdot 2y^2}}{2}\nimplies q=frac{-ypm ysqrt{7}i}{2}\nimplies xp=xfrac{dy}{dx}=y(-1pmsqrt{7}i)\nimplies frac{dy}{y}=(-1pmsqrt{7}i)frac{dx}{x}\nimplies intfrac{dy}{y}=(-1pmsqrt{7}i)intfrac{dx}{x}\nimplies ln y=-1pmsqrt{7}iln x+ln c\nimplies y=cx^{-1pmsqrt{7}i}”
Where c is constant and “i=sqrt{-1}”
Place an order and get the best paper writers